skip to main content


Search for: All records

Creators/Authors contains: "Fabrizio, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We investigate the properties of the mixed-mode (RRd) RR Lyrae (RRL) variables in the Fornax dwarf spheroidal (dSph) galaxy by using B- and V-band time series collected over 24 yr. We compare the properties of the RRds in Fornax with those in the Magellanic Clouds and in nearby dSphs, with special focus on Sculptor. We found that the ratio of RRds over the total number of RRLs decreases with metallicity. Typically, dSphs have very few RRds with 0.49≲ P0 ≲0.53 d, but Fornax fills this period gap in the Petersen diagram (ratio between first overtone over fundamental period versus fundamental period). We also found that the distribution in the Petersen diagram of Fornax RRds is similar to Small Magellanic Cloud (SMC) RRds, thus suggesting that their old stars have a similar metallicity distribution. We introduce the Period–Amplitude RatioS diagram, a new pulsation diagnostics independent of distance and reddening. We found that Large Magellanic Cloud (LMC) RRds in this plane are distributed along a short- and a long-period sequence that we identified as the metal-rich and the metal-poor component. These two groups are also clearly separated in the Petersen and Bailey (luminosity amplitude versus logarithmic period) diagrams. This circumstantial evidence indicates that the two groups have different evolutionary properties. All the pulsation diagnostics adopted in this investigation suggest that old stellar populations in Fornax and Sculptor dSphs underwent different chemical enrichment histories. Fornax RRds are similar to SMC RRds, while Sculptor RRds are more similar to the metal-rich component of the LMC RRds.

     
    more » « less
  2. null (Ed.)
    We present a chemo-dynamical study of the Orphan stellar stream using a catalog of RR Lyrae pulsating variable stars for which photometric, astrometric, and spectroscopic data are available. Employing low-resolution spectra from the Sloan Digital Sky Survey (SDSS), we determined line-of-sight velocities for individual exposures and derived the systemic velocities of the RR Lyrae stars. In combination with the stars’ spectroscopic metallicities and Gaia EDR3 astrometry, we investigated the northern part of the Orphan stream. In our probabilistic approach, we found 20 single mode RR Lyrae variables likely associated with the Orphan stream based on their positions, proper motions, and distances. The acquired sample permitted us to expand our search to nonvariable stars in the SDSS dataset, utilizing line-of-sight velocities determined by the SDSS. We found 54 additional nonvariable stars linked to the Orphan stream. The metallicity distribution for the identified red giant branch stars and blue horizontal branch stars is, on average, −2.13 ± 0.05 dex and −1.87 ± 0.14 dex, with dispersions of 0.23 and 0.43 dex, respectively. The metallicity distribution of the RR Lyrae variables peaks at −1.80 ± 0.06 dex and a dispersion of 0.25 dex. Using the collected stellar sample, we investigated a possible link between the ultra-faint dwarf galaxy Grus II and the Orphan stream. Based on their kinematics, we found that both the stream RR Lyrae and Grus II are on a prograde orbit with similar orbital properties, although the large uncertainties on the dynamical properties render an unambiguous claim of connection difficult. At the same time, the chemical analysis strongly weakens the connection between both. We argue that Grus II in combination with the Orphan stream would have to exhibit a strong inverse metallicity gradient, which to date has not been detected in any Local Group system. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)